

Unità di ventilazione con recupero di calore, pompa di calore per riscaldamento o raffrescamento aria/aria

GE Premium

GE Premium è un'unità per la ventilazione con recupero del calore, con installata all'interno una pompa di calore aria/aria in grado di riscaldare o raffrescare gli ambienti tramite i condotti di ventilazione.

Versioni disponibili:

GE Premium 1

Adatta per portate fino a 325 m³/h

GE Premium 1L

Adatta per portate fino a 325 m³/h con compressore di potenza maggiorata

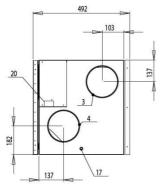
GE Premium 2

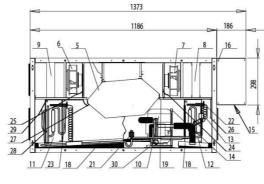
Adatta per portate fino a 400 m³/h

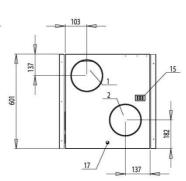
GE Premium 3

Adatta per portate fino a 560 m³/h

Specifiche tecniche:


	GE Premium 1	GE Premium 1L	GE Premium 2	GE Premium 3
Portata d'aria nominale (ventilatori al 100%)	325 m³/h	325 m³/h	400 m³/h	560 m³/h
Prevalenza disponibile in condizioni nominali	125 Pa	125 Pa	125 Pa	125 Pa
Potenza media prodotta da PdC	895 W	1363 W	1800 W	2690 W
Potenza media assorbita dalla PdC	295 W	425 W	575 W	910 W
Tipologia motore ventilatori	EC inverter	EC inverter	EC inverter	EC inverter
Tipologia ventilatori	Plug fan	Plug fan	Plug fan	Plug fan
Dimensioni unità [L x P x H mm]	1186 x 492 x 600	1186 x 492 x 600	1186 x 615 x 601	1186 x 735 x 601
Connessioni condotti aria	Ø160 mm	Ø160 mm	Ø200 mm	Ø200 mm
Range temperature scambiatore	-15℃/+35℃	-15℃/+35℃	- 15℃/+35℃	-15℃/+35℃
Filtro aria in ingresso	F7	F7	F7	F7
Filtro aria espulsa	G4	G4	G4	G4
Peso dell'unità a vuoto	105 kg	105 kg	126 kg	143kg
Tipologia refrigerante pompa di calore (kg)	R407c (1kg)	R407c (1kg)	R407c (1kg)	R407c (1kg)



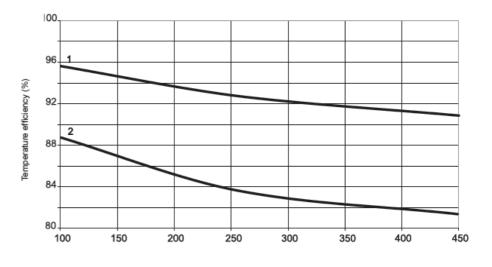


GE Premium 1/1L

Dimensioni:

- 1: Fresh air Ø160
- 2: Exhaust air Ø160
- 3: Extract air Ø160
- 4: Supply air Ø160
- 5: Counter current heat exch.
- 6: Supply air fan
- 7: Extract air fan
- 8: Filter, extract air
- 9: Filter, supply air
- 10: Compressor
- 11: Evaporator
- 12: Condensator
- 13: High-pressure gov.
- 14: Process valve
- 15: Cable entry
- 16: Electrical box
- 17: Condensat.conn. Ø15
- 18: Condensation tub
- 19: Supply boss at the back Ø100
- 20: Switch
- 21: Magnetic valve defrosting
- 22: Thermovalve condenser
- 23: Thermovalve evaporater 24: Sensor for extract air
- 25: Sensor for fresh air
- 26: Sensor for supply air
- 27: Sensor before cooling air 28: Sensor for cooling coil
- 29: Sensor for exhaust air
- 30: Four-way valve

Efficienza del recuperatore:


Rendimento del recuperatore di calore considerando la portata volumetrica $M_{IN} = M_{OUT}$

NB: Non è stato considerato un congelamento eventuale scambiatore di calore a temperature esterne molto basse.

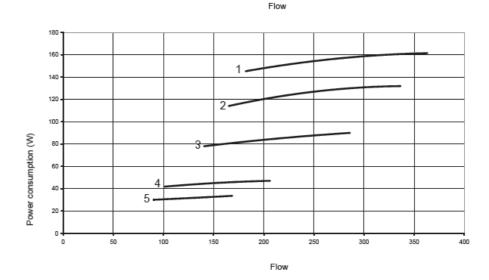
$$1 = T_{Aria\ EST} = -12\%$$

$$RF = 50\%$$

$$2 = T_{Aria\ EST} = 4$$
°C
RF = 50%

Consumo elettrico:

1 = 100%

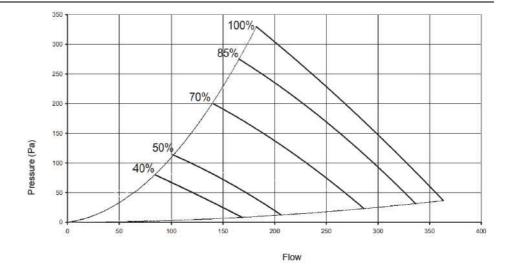

2 = 85%

3 = 70%

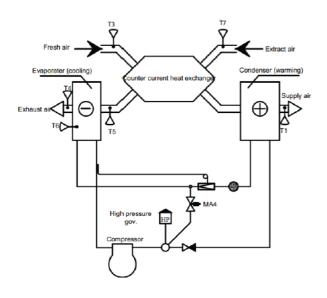
4 = 50%

5 = 40%

Della portata nominale



Curve caratteristiche:


Le linee di portata sono basate su una media del volume d'aria in mandata e ripresa.

Potenza:

- Consumo di energia per il riscaldamento dell'aria esterna a una temperatura ambiente di 20℃
- 2- Potenza dell'apparecchio
- 3- Potenza assorbita con compressore in funzione

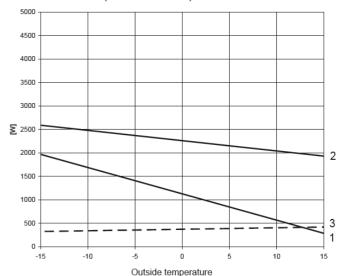
Schema funzionale:

Sensors:

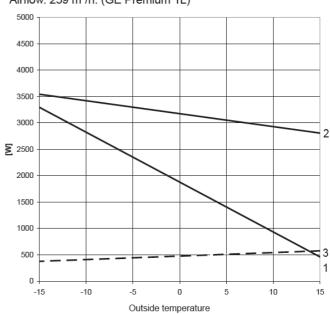
T1: Supply air

T2: Room

T3: Fresh air


T4: Exhaust air

T5: Before the cooling coil


T6: Cooling coil

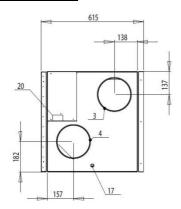
T7: Extract air

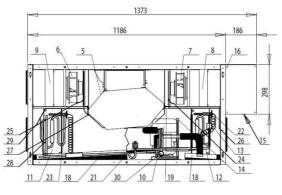
Airflow. 159 m³/h. (GE Premium 1L)

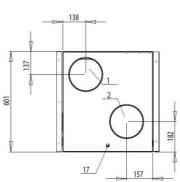
Airflow. 259 m³/h. (GE Premium 1L)

Magnetic valve:

MA4: Defrosting


MA7: Heat/cooling



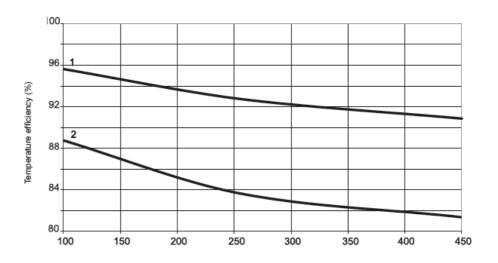


GE Premium 2

Dimensioni:

- Fresh air
- Exhaust air
- Extract air
- Supply air
- Counter current heat exch.
- 6. Supply air fan
- Extract air fan
- Filter, extract air
- Filter, supply air
- Compressor
- Evaporator
- 12. Condensator
- 13. High-pressure gov.
- 14. Process valve
- Cable entry 15.
- 16. Switch

- Electrical box
- Condensation conn. Ø15
- Condensation tub
- 20. Supply boss at the back Ø100
- 21. Magnetic valve defrosting
- Thermovalve condenser
- 23. Thermovalve evaporater
- Sensor for extract air
- Sensor for fresh air
- Sensor for supply air
- 27. Sensor before cooling air
- 28. Sensor for cooling coil
- 29. Sensor for exhaust air
- Four-way valve


Efficienza del recuperatore:

Rendimento del recuperatore di calore considerando la portata volumetrica $M_{IN} = M_{OUT}$

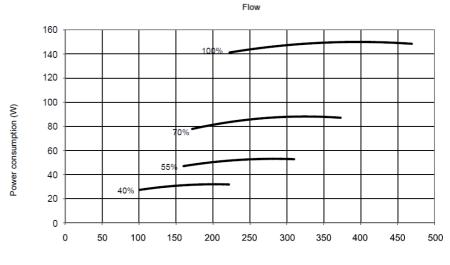
NB: Non è stato considerato un congelamento eventuale dello scambiatore di calore a temperature esterne molto basse.

$$1 = T_{Aria\ EST} = -12$$

RF = 50%

$$2 = T_{Aria\ EST} = 4$$
°C
RF = 50%

Consumo elettrico:

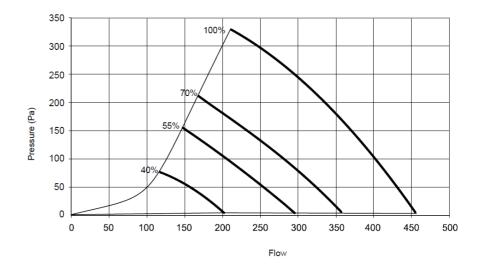

1 = 100%

2 = 70%

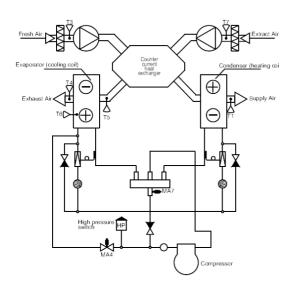
3 = 55%

4 = 40%

Della portata nominale



Curve caratteristiche:


Le linee di portata sono basate su una media del volume d'aria in mandata e ripresa.

Potenza:

- Consumo di energia per il riscaldamento dell'aria esterna a una temperatura ambiente di 20℃
- 2-Potenza dell'apparecchio
- 3-Potenza assorbita con compressore funzione

Schema funzionale:

Magnetic valve:

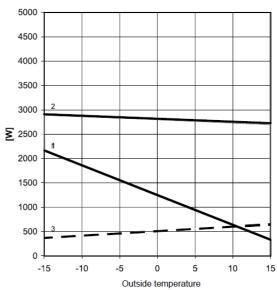
MA4: Defrosting

MA7: Heat/cooling

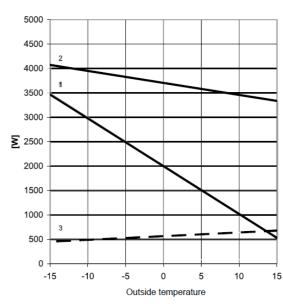
Sensors:

T1: Supply air

T2: Room

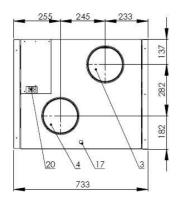

T3: Fresh air T4: Exhaust air

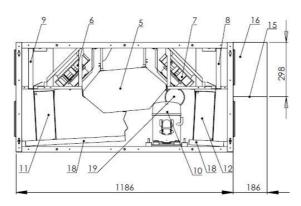
T5: Before the cooling coil

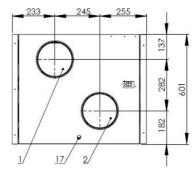

T6: Cooling coil

T7: Extract air

Airflow 285 m³/h





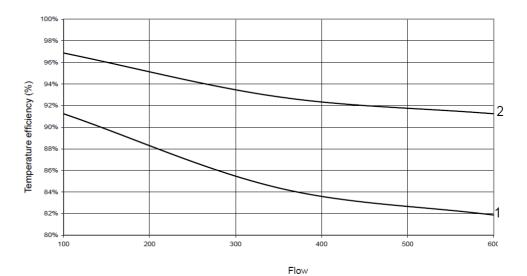


GE Premium 3

Dimensioni:

- 01. Fresh air Ø200
- 02. Exhaust air Ø200
- 03. Extract air Ø200
- 04. Supply air Ø200
- 05. Counter current heat exch.
- 06. Supply air fan
- 07. Extract air fan
- 08. Filter, extract air
- 9. Filter, supply air
- 10. Compressor
- 11. Evaporator
 - Evaporator
 Condensator
- High-pressure gov.
- Process valve
- Cable entry
- Electrical box
- 17. Condensat.conn. Ø15
- 18. Condensation tubs
- 19. Supply boss, back Ø100
- 20. Switch
- 21. Magnetic valve defrosting22. Thermovalve condenser
- 23. Thermovalve evaporater
- 24. Sensor for extract air
- Sensor for fresh air
- 26. Sensor for supply air
- Sensor before cooling coil
- 28. Sensor for cooling coil
- 29. Sensor for exhaust air 30. Four-way valve

Efficienza del recuperatore:


Rendimento del recuperatore di calore considerando la portata volumetrica $M_{IN} = M_{OUT}$

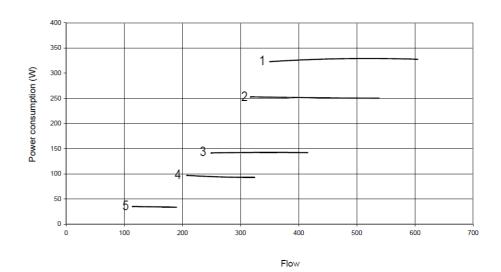
NB: Non è stato considerato un eventuale congelamento dello scambiatore di calore a temperature esterne molto basse.

$$1 = T_{Aria\ EST} = -12^{\circ}$$

$$RF = 50^{\circ}$$

$$2 = T_{Aria\ EST} = 4$$
°C
RF = 50%

Consumo elettrico:

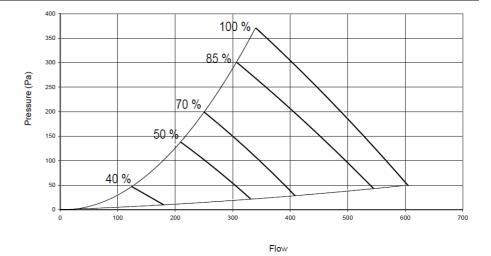

2 = 85%

3 = 70%

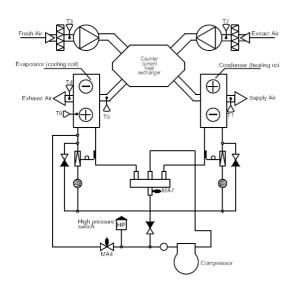
4 = 50%

5 = 40%

Della portata nominale



Curve caratteristiche:


Le linee di portata sono basate su una media del volume d'aria in mandata e ripresa.

Potenza:

- 1- Consumo di energia per il riscaldamento dell'aria esterna a una temperatura ambiente di 20℃
- 2- Potenza dell'apparecchio
- Potenza assorbita con compressore in funzione

Schema funzionale:

Magnetic valve:

MA4: Defrosting

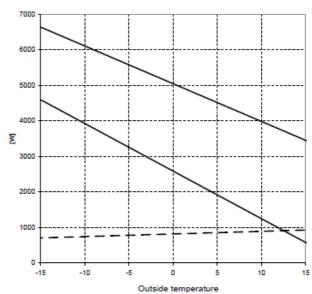
MA7: Heat/cooling

Sensors:

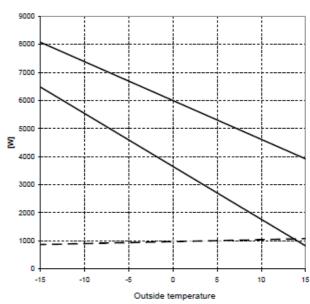
T1: Supply air

T2: Room

T3: Fresh air


T4: Exhaust air

T5: Before the cooling coil


T6: Cooling coil

T7: Extract air

Airflow 395 m3/h

Airflow 568 m3/h.

